
CBH Assessment Data Extractor
Van Voorst Consulting, LLC

Overview
This utility automatically extracts the data from selected assessments into either CSV files or SQL tables.
The resultant file is a flat, normal, easy to use file, which can then be easily used by normal reporting or
Business Intelligence tools. It also provides a SQL statement that can be used to create a SQL view to
access the data directly, rather than through an exported copy.

Details
The utility consists of two components. The “front end” component allows you to select which
assessments or pages you want to extract, and allow you to select which items from those pages you
want. It also allows you to choose to output that assessment to either a CSV file or to dynamically
create a SQL table. The column headers for the output file are based on the labels from your form and
you can be overridden in the extract definition.

The output data will automatically lookup and expand all radio buttons, checklists, and selection list
items as well as narrative text content.
Checklists are expanded to multiple columns, one for each item, and the data contains a “Y” or “N”
depending on if the item was checked.

It also has the option to save the SQL statement that it uses to a file so that you can create a SQL view
from it and pull data live at any time.

The other component is the “engine” that actually runs the data extract. The engine can be run
automatically each night via Windows Task Scheduler to refresh the data extracts, or it can be
interactively run from the “front end” program.

Use Case - On going reporting for assessment data
Accessing CBH Assessment data is very complicated because the data is stored in many tables. This
program removes the complexity by finding all of the data and putting it in a single file.
This makes it very easy to do reports or data analysis using business intelligence tools like PowerBI or
Tableau because those tools simple access that single file.
This tool can be run automatically on a daily basis to refresh the extracted data tables so that your
reports are always based on data that is current as of the prior evening.
This process makes responding to data requests a minor task rather than a multiple hour task for an
experienced data person.

Use Case – Data Migration
This tool can also be valuable when you are migrating to another EHR software package. This tool can
be used to pull all your assessment data into a “normal” SQL database for migration or simply for
historical reference without having to keep CBH up and running. It can also be used to generate the SQL
statement needed to pull all the data and look up values.

NOTES
If an assessment contains a detail table (a MEW), this utility will SKIP that part of the assessment. It only
collects data from the questions on the assessment, not from detail tables.

When a page extract involves multiple versions of questions, you can only output it to a SQL table, not
CSV, but in either case you can output the SQL statement.

Assessment exports can only be done with page exports that were stored in SQL.

STEP-BY-STEP HOW IT WORKS

EXAMPLE: GENERATING A SQL STATEMENT
In this example, we’ll use it to generate the SQL statement for an assessment and store just that
statement in a file for later use.

The first step is to use the Access front end to create a new “Page” extract definition. To do that, we
select the Page from the list of active pages. In this example, we’ll choose the page called “Clinical
Outcome Measures”.

Next we’ll click the “Build Question List” button which will read the page definition in Cerner to
determine the list of questions on this page. If there are multiple versions with different questions, it
will compile a comprehensive list of all of them.

Here is the result of Building the Question List:

You can see there that the column name is created using the label of the field on the form. In the event
that the label is a duplicate, it will append the question number to the name to make it unique. You can
rename the column names here to make them more meaningful if desired. In the next screenshot you’ll
see revised column names.

We are now ready to generate our SQL statement. We simply check the box that says “Show the SQL
Statement”, then click the “Run the Extract” button.

This will start the engine process which will build the SQL statement, and will write it to a .sql file in the
engine folder. (It will also create the destination SQL table and populate it with data).

Here is the SQL that it created for this definition (formatted using an online format tool):

SELECT TRCLPLAN.CLIENT_ID,

 TRCLPLAN.ID AS TRT_PLAN_ID,

 TRCLPLAN.DATE AS ASSESSMENT_DATE,

 TRCLPLAN.FREEZE_DATE AS FINAL_APPROVE_DATE,

 TRCLPAGE.[REVISION#] AS [CLINICALOUTCOME_REVISION],

 TRCLQDS2.[PROGRAM_TYPE] AS [Department_CODE],

 Lookup3427.LookupValue AS [Department],

 TRCLQDS2.[UNIT_ASSIGNED] AS [Program_CODE],

 Lookup3470.LookupValue AS [Program],

 TRCLQPH5.[ULCER_STAGE1] AS [Stage of Change Primary_CODE],

 Lookup8705.LookupValue AS [Stage of Change Primary],

 TRCLQPH5.[ULCER_STAGE2] AS [Stage of Change Secondary_CODE],

 Lookup8706.LookupValue AS [Stage of Change Secondary],

 TRCLQPH5.[ULCER_STAGE3] AS [Stage of Change Tertiary_CODE],

 Lookup8707.LookupValue AS [Stage of Change Tertiary],

 TRCLQPH5.[ULCER_STAGE4] AS [Stage of Change Overall_CODE],

 Lookup8708.LookupValue AS [Stage of Change Overall],

 TRCLQSC7.[GOAL_NUM1] AS [Goal Scaling Primary_CODE],

 Lookup9184.LookupValue AS [Goal Scaling Primary],

 TRCLQSC7.[GOAL_NUM2] AS [Goal Scaling Secondary_CODE],

 Lookup9185.LookupValue AS [Goal Scaling Secondary],

 TRCLQSC7.[GOAL_NUM3] AS [Goal Scaling Tertiary_CODE],

 Lookup9186.LookupValue AS [Goal Scaling Tertiary],

 TRCLQSC7.[GOAL_NUM4] AS [Progress Scaling Overall_CODE],

 Lookup9187.LookupValue AS [Progress Scaling Overall],

 TRCLQSC9.[CAFAS_SC_AD] AS [CAFAS Score],

 TRCLQSCA.[FIN_STAT] AS [CANS_CODE],

 Lookup16629.LookupValue AS [CANS],

 TRCLQSCA.[EDU_STAT] AS [CASEY_CODE],

 Lookup16630.LookupValue AS [CASEY],

 TRCLQGN7.[MH_LRALENGTH] AS [PrimaryConcern_CODE],

 Lookup29457.LookupValue AS [PrimaryConcern],

 TRCLQGN7.[MH_LRAASSGNAGN1] AS [SecondaryConcern_CODE],

 Lookup29461.LookupValue AS [SecondaryConcern],

 TRCLQGN7.[MH_LRAASSGNAGN2] AS [TertiaryConcern_CODE],

 Lookup29463.LookupValue AS [TertiaryConcern]

FROM TRCLPLAN

 INNER JOIN TRCLPAGE

 ON TRCLPLAN.ID = TRCLPAGE.TRT_PLAN_ID

 INNER JOIN TRCLQDS2

 ON TRCLPLAN.ID = TRCLQDS2.TRT_PLAN_ID

 AND TRCLPLAN.CLIENT_ID = TRCLQDS2.CLIENT_ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'TRTPRG') AS Lookup3427

 ON TRCLQDS2.[PROGRAM_TYPE] = Lookup3427.ID

 LEFT JOIN (SELECT CAUNIT.ID AS ID,

 [ID] AS LookupValue

 FROM CAUNIT) AS Lookup3470

 ON TRCLQDS2.[UNIT_ASSIGNED] = Lookup3470.ID

 INNER JOIN TRCLQPH5

 ON TRCLPLAN.ID = TRCLQPH5.TRT_PLAN_ID

 AND TRCLPLAN.CLIENT_ID = TRCLQPH5.CLIENT_ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'STAGES') AS Lookup8705

 ON TRCLQPH5.[ULCER_STAGE1] = Lookup8705.ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'STAGES') AS Lookup8706

 ON TRCLQPH5.[ULCER_STAGE2] = Lookup8706.ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'STAGES') AS Lookup8707

 ON TRCLQPH5.[ULCER_STAGE3] = Lookup8707.ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'STAGES') AS Lookup8708

 ON TRCLQPH5.[ULCER_STAGE4] = Lookup8708.ID

 INNER JOIN TRCLQSC7

 ON TRCLPLAN.ID = TRCLQSC7.TRT_PLAN_ID

 AND TRCLPLAN.CLIENT_ID = TRCLQSC7.CLIENT_ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'GOALSCAL') AS Lookup9184

 ON TRCLQSC7.[GOAL_NUM1] = Lookup9184.ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'GOALSCAL') AS Lookup9185

 ON TRCLQSC7.[GOAL_NUM2] = Lookup9185.ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'GOALSCAL') AS Lookup9186

 ON TRCLQSC7.[GOAL_NUM3] = Lookup9186.ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'GOALSCAL') AS Lookup9187

 ON TRCLQSC7.[GOAL_NUM4] = Lookup9187.ID

 INNER JOIN TRCLQSC9

 ON TRCLPLAN.ID = TRCLQSC9.TRT_PLAN_ID

 AND TRCLPLAN.CLIENT_ID = TRCLQSC9.CLIENT_ID

 INNER JOIN TRCLQSCA

 ON TRCLPLAN.ID = TRCLQSCA.TRT_PLAN_ID

 AND TRCLPLAN.CLIENT_ID = TRCLQSCA.CLIENT_ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'GOALSCAL') AS Lookup16629

 ON TRCLQSCA.[FIN_STAT] = Lookup16629.ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'GOALSCAL') AS Lookup16630

 ON TRCLQSCA.[EDU_STAT] = Lookup16630.ID

 INNER JOIN TRCLQGN7

 ON TRCLPLAN.ID = TRCLQGN7.TRT_PLAN_ID

 AND TRCLPLAN.CLIENT_ID = TRCLQGN7.CLIENT_ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'TXCONCER') AS Lookup29457

 ON TRCLQGN7.[MH_LRALENGTH] = Lookup29457.ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'TXCONCER') AS Lookup29461

 ON TRCLQGN7.[MH_LRAASSGNAGN1] = Lookup29461.ID

 LEFT JOIN (SELECT CDMISCSL.ID AS ID,

 [DESC] AS LookupValue

 FROM CDMISCSL

 WHERE CATEGORY = 'TXCONCER') AS Lookup29463

 ON TRCLQGN7.[MH_LRAASSGNAGN2] = Lookup29463.ID

WHERE TRCLPAGE.PAGE_ID = 'CLINICALOUTCOME'

 AND TRCLPLAN.FREEZE_DATE > '1/1/1900'

 AND (TRCLPLAN.VOID_FLAG IS NULL

 OR TRCLPLAN.VOID_FLAG <> 'Y')

 AND TRCLPAGE.[REVISION#] >= 0.00

 AND TRCLPAGE.[REVISION#] < 999

You’ll see that every column that needed a value looked up in another table has been handled and
looked up. It adds a second field to the table to show the looked up value. The original coded field is
given a “_CODE” suffix.

If this form contained checklist items, each item becomes its own column.

This SQL is directly useable. When run in SQL Management Studio, it produces this output (broken up in
sections for this document):

As you can see, all the data from the assessment is presented in the output, and all lookup values have
been looked up. The output is ready for immediate, and simple, use by report writers and data extracts.
Additionally, it includes the CLIENT_ID field to allow you to easily link to other CBH tables – such as
CDCLIENT if you needed to have the case number or client name included.

For data extract purposes, you could save this SQL statement as a SQL view and then reference it in your
data extract queries.

